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Abstract. In this paper we study the effect of carrier relaxation processes on Auger recombination
in semiconductor quantum wells (QWs). It is shown that the calculation in the framework of the
conventional perturbation theory is not applicable in the case of narrow wells and wires because of
its divergence. Therefore a more rigid Green function techniques is used. The relaxation processes
are shown to increase Auger recombination coefficient, however their influence becomes weaker
with decrease of the QW width. The transition from the QW to the bulk case is explicitly carried out.

Introduction

It is several decades since Auger recombination (AR) was investigated in bulk semicon-
ductors [1, 2 1. It was shown that Auger process calculated in the first order of perturbation
theory on Coulomb interaction has a threshold nature, i.e. its coefficient exponentially de-
pends on temperature. In heterostructures, however, the transversal momentum component
doesn't conserve thus allowing the thresholdless Auger process to appear [3, 41. In our pre-
vious papers [5, 61 we showed that there are three different AR processes in quantum wells
(QWs): (i) threshold, which is just a 2D analogue of the bulk process, (ii) quasithreshold
arising from confinement of electrons and holes within the quantum well, and (iii) thresh-
oldless which is caused by carrier scattering on the heteroboundaries. An explicit transition
from the 2D to the 3D case for the CHCC Auger process carried out in [5, 61 showed that
the quasithreshold and threshold mechanisms merge into the single bulk process when the
QW width becomes considerably larger than the critical value given by:

( T )3/2 Eth
a. = Eg h ) exp -, (T)

where 4Lg = 27r/k(Eg) is the wavelength of an electron having the band gap energy2mE
Eg, Eth ; -!-Eg is the threshold energy in a homogeneous semiconductor, mc and
mh are the electron and heavy hole masses, T is temperature in energy units. It is an
easy matter to see that in semiconductors with the energy gap close to I eV the value of
a, can be as large as several thousands Angstrdms, which strongly exceeds the free path
length in these semiconductors. Hence there is an obvious contradiction between this result
and the common sense. The solution to this paradox is the direct taking into account of
various scattering processes. Finally we note here that it is impossible to use conventional
quantum mechanical perturbation analysis for this purpose. The reason is that the scattering
mechanisms such as the electron(hole)-electron(hole) or electron(hole)-phonon processes
become resonant and the corresponding expressions obtained in the second and higher
orders of perturbation theory diverge [61.

386



QW/SL.16p 387

1 Green function formalism for the calculation of Auger recombination processes

The temperature Green function formalism was firstly applied to AR processes in a homo-
geneous semiconductor in [7, 8]. However there was no investigation of Green function
broadening due to relaxation processes on the value and temperature dependence of Auger
coefficient. The author of those papers also used phenomenological expressions for the
wave functions and overlap integrals rather than those obtained in the multi-band kp-theory.
Nevertheless, a convenient method for calculating the Auger rate in any order of interaction
potential is suggested there.

The expression for the recombination rate obtained in the linear response theory on
Coulomb interband scattering is as follows [71:

CO
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where

G (t) = 0 (t) j <4(ri't)W•j 1 (r 2 ,t)Wl 2, 2 (r 2 ,t) W 2 (r,,t)
il , l ....

X 4, k (r3, 0) Jk3, /1 (r 4 , 0) , 12 (r 4 , O) W, k2 (r3, 0)) (3)

is the four particle retarded Green function, 0(t) is the step function, U(r) is the inter-
action Coulomb potential screened by the host lattice, )Xi and ýj c C, v numerate the
conduction or the valence band, iI, j I .... are the spin indices [61, u,/3 .... are the indices
numerating the components of wave functions in 8 x 8 basis [61 (a = Is T), Is $) ... ),
A1 ,2,3,4 = 4X2 ,c + kl'c - 43,1 - 4X4 ,c shows that only interband Auger transitions
are responsible for the non-conservation of particles in the conduction (valence) band,

P A = (11, -- ktv) [4X 4 ,c + 4X3,c - 42,C - 41,C] 4P(t) is the field operator in the modified
Heisenberg picture where all terms leading to interband transition are excluded from the
total Hamiltonian [7 1. We note here that in a homogeneous semiconductor wave functions
with different spins are orthogonal (il = i2 , J1 = J2 .... ), however this is not the case
for QWs. It was assumed that both electrons in the conduction band and holes in the va-
lence band have Fermi-Dirac distribution with their own chemical potentials (it, :A t).
This assertion is valid when the intraband relaxation times are much shorter than those of
interband transitions.

Further simplifications come from using the mean field approximation for the four-
particle Green function. In this case the function G4R splits into two different terms corre-
sponding to the direct and exchange scattering processes. This approximation is justified at
high temperatures when there are no coherent, e.g. excitonic, states and the vertex correc-
tions are small. Because the relaxation time for holes is much shorter than that for electrons,
we neglect by the electron scattering processes. For the sake of simplicity electrons in ini-
tial state are supposed to occupy only their ground state. However this assumption is not
essential because the ground state energy can be substituted by the mean thermal one for
sufficiently wide QWs. Then after some manipulations, for the recombination rate per unit
square, we obtain:
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x(2M/ (q, k 4)Mi* , ( * (q-, k4)), (4)

where
a/2Mnj jfx ~x

M1(q, k4) P. * (x, qk4 Ps, (X) I' X) *M(qk)= f J*(qk 4 ) Of'l (x)1/Jif~ 2 (x)1/f
3*h j(xq)dx,

a is the QW width, M11 can be obtained from MI by interchanging indices cl and c2,

n, = Nc/S is the 2D electron density, nij and mi numerate the energy levels and spin
states of a heavy hole, ft (E) = exp[(Lh - E)/TiT is the hole distribution function, which
are supposed to be non-degenerated for the case of simplicity, Dnj,,mi (q, E) is the spectral
function, obtained from the imaginary part of a heavy hole Green function, angular brackets
in (4) denote averaging over the states of localized electrons. It is to be noted that only
the quasithreshold AR mechanism was taken into account in (4), because it was shown
to prevail in QWs at high temperatures [61. In general the Green function in a QW is
not diagonal and the spectral function D cannot be written in a simple Lorentzian form.
However, in two limiting cases of wide and narrow wells D becomes diagonal. Thus in
narrow QWs there is only one energy level in the well and in wide QWs Green function
becomes diagonal because of the spatial homogeneity. Therefore if instead of Dnj, ,i an
expression having Lorenz form multiplied by 6n,mji were used the obtained results would
be accurate in both limits of narrow and wide QWs and could be considered as interpolate
ones for intermediate widths. In this case it is easy to verify that the Auger coefficient is the
squared matrix element ofAuger transition averaged over the initial states and summed over
the final states, but where instead of the 6-function representing the energy conservation law
there is a spectral function. In the limit F --> 0 (4) turns to the coefficient obtained in the
first order of perturbation theory. The expression for the quasithreshold Auger coefficient
obtained in [61 can be easily generalized yielding

7r2 e4 h 3 y 4 F(Aso/Eg) 1 dq cc q q 2k2 + q2(k2 + 1q2C , t:2 E5 a(a + 21Kc.)2 Z 2 +- kn k4
K0  E9 n q

00
1 Fn (q, E)

x(G-1 + 2GO + GI) (5)7r Fn(q, E) 2 + (E - Ehn(q

where

G =I - cos (k4 - kh, - 2Xýkc)a, =Y c h(q2
= k4 - khn - 2)Xkc. n f qdq exp T

0

khn and Ehn are the wave vector and the energy of a hole at the nth level, qc is the average
longitudinal momentum of the localized electrons, F(Aso/Eg) is the multiplier close to
unity introduced in [61, k. and K. are the absolute values of electron transversal wavevec-
tors in a quantum well and barrier region respectively, y is Kane's parameter, k4 can be
determined from the following equation:

Ef(k2 + q2 ) - Eg - 2Ec = E,

where Ef (k) is the energy of a conduction band electron. Obviously both Gx and D in
fact eliminate threshold conditions. Thus Gj allows non-conservation of the momentum
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and D violates the energy conservation law. The critical quantum well thickness at which
the 2D-3D transition occurs can be determined now by comparing widths of G and D.
An another important feature arises from the analysis of (5). Namely, the calculations
made in the framework of conventional perturbation theory wouldn't give the term F2 in
the denominator of the spectral function D. Because there is no threshold in sufficiently
narrow wells and all values of the hole momentum q are allowed, this expression would
diverge at the resonance where the denominator becomes zero. Therefore the approach
based on the conventional perturbation theory is not applicable in the case of QWs.

2 Discussion

Certainly the calculation of F, or to be more precise of the imaginary part of the Green
function, is quite a separate problem which is to be discussed elsewhere. The value of F
obviously depends on carrier density, QW width, etc. However to illustrate the effect of
relaxation processes in the QWs we consider F to be an external parameter and compare
dependences of AR coefficient, multiplied by the squared QW width, on QW width at
different F values (Fig. 1).

The analysis of this figure shows that in narrow QWs the finite lifetime of carriers is not
very important factor and AR can be calculated in the first order of the perturbation theory,
while in wide QWs F plays a crucial role and the more its value the less width where the
2D-3D transition occur.
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